Part Number Hot Search : 
GBPC1201 DC110 5KP78C 00DT1 56F83 MP7628 BEFSCA3 2N5401C
Product Description
Full Text Search
 

To Download RF2689 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Preliminary 7
Typical Applications * Multimode W-CDMA/GSM/DCS/EDGE * W-CDMA Systems * GSM Systems
RF2689
W-CDMA/GSM/DCS RECEIVE AGC AND DEMODULATOR
Product Description
The RF2689 is an integrated complete IF AGC amplifier and quadrature demodulator designed for the receive section of W-CDMA and GSM/DCS applications. It is designed to amplify received IF signals, while providing 70dB of gain control range, a total of 90dB gain, and demodulate to baseband I and Q signals. This circuit is designed as part of RFMD's multimode W-CDMA/GSM/ DCS chipset, which also includes the RF2688 W-CDMA/ GSM/DCS transmit modulator and IF AGC/Upconverter. The IC is manufactured on an advanced 25GHz FT Silicon Bi-CMOS process, and is packaged in a 20-pin, 4mmx4mm, leadless chip carrier.
1.00 0.90 0.60 0.24 typ
4.00 sq.
0.65 0.30
4 PLCS
3 0.20
2.10 sq.
12 MAX 0.05
Dimensions in mm.
0.75 0.50 0.50 Note orientation of package. 0.23 0.13
4 PLCS
7
QUADRATURE DEMODULATORS
NOTES: 1 Shaded lead is Pin 1. 2 Pin 1 identifier must exist on top surface of package by identification mark or feature on the package body. Exact shape and size is optional. Dimension applies to plated terminal: to be measured between 0.02 mm and 0.25 mm from terminal end. 4 Package Warpage: 0.05 mm max. 5 Die Thickness Allowable: 0.305 mm max. 3
Optimum Technology Matching(R) Applied
Package Style: LCC, 20-Pin, 4x4
uSi Bi-CMOS
Si BJT
GaAs HBT SiGe HBT
GaAs MESFET Si CMOS
Features * Digitally Controlled Power Down Mode * 2.7V to 3.3V Operation
14 I OUT+ 13 I OUT-
VGC2
VGC1
20
1
17
18
IF+
IF-
GSM IN+ 2 GSM IN- 3 DIV2 W-CDMA IN+ 4 W-CDMA IN- 5
Gain Control
* Digital LO Quadrature Divide-by-8 * IF AGC Amp with 70dB Gain Control * 80dB Maximum Voltage Gain
15 CALEN I/Q Cal 16 FCLK 12 Q OUT+ Div 12 or 4 Mode Control & Biasing 11 Q OUT-
DIV2
19 VREF2V
6 VCC
8 LO
7 MODE A
9 MODE B
10 EN RX
Ordering Information
RF2689 RF2689 PCBA W-CDMA/GSM/DCS Receive AGC and Demodulator Fully Assembled Evaluation Board
Functional Block Diagram
RF Micro Devices, Inc. 7625 Thorndike Road Greensboro, NC 27409, USA
Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com
Rev A4 010815
7-39
RF2689
Absolute Maximum Ratings Parameter
Supply Voltage Power Down Voltage (VPD) Input RF Power Ambient Operating Temperature Storage Temperature
Preliminary
Rating
-0.5 to +5 -0.5 to VCC +0.7 +3 -40 to +85 -40 to +150
Unit
VDC VDC dBm C C Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).
Parameter
W-CDMA Mode
Specification Min. Typ. Max.
Unit
Condition
Temp=25C, VCC =3V, ZLOAD =60k diff., LO=1520MHz@-10dBm, ZSOURCE =500 diff.
IF Frequency W-CDMA IF Input Impedance
190 1200 2400
MHz
Single-ended Balance. An external resistor across the differential input is used to define the input impedance.
7
QUADRATURE DEMODULATORS
LO Frequency LO Input Level LO Input Impedance Maximum Voltage Gain
-20 76
1520 -10 50 80
0
MHz dBm dB
Single-ended. Pin-to-Pin voltage gain. Note: 10dB additional voltage gain in input match 50 to 500.
Minimum Voltage Gain Gain Variation versus VCC and Temperature Gain Control Voltage Input IP3
5 -3 0.3
10 +1
15 +3 2.4
dB V Defined with external 10k resistor in series with VGC1 pin. Analog gain control. Blockers at 10MHz and 20MHz offset. Maximum Gain. VGC =2.4V Minimum Gain. VGC =0.3V Maximum Gain. VGC =2.4V Minimum Gain VGC =0.3V Measured differentially. Out of band blocker causing 1dB of inband gain compression. Blocker at 5MHz. Maximum Gain. VGC =2.4V Minimum Gain. VGC =0.3V Butterworth third order, FC 2.5M+10% Calibrated. FCLK =13MHz, 3dB rolloff from 1MHz offset A measure of IQ gain match and IQ quadrature accuracy. Measured for baseband frequencies 100kHz to 2.5MHz. Resistive Load Impedance. Differentially across op pins. Capacitive Load Impedance. To ground. VGC =0.3V, PIN =-30dBm VGC =0.3V, PIN =-30dBm
-52 -5 Noise Figure Inband Output 1dB Compression Compression 1.5
-48 0 5 56 2.0 7 58
dBm dBm dB VP-P
-48 -17 Baseband 3dB Bandwidth Sideband Suppression 2.25 2.5 2.75 27
dBm dBm MHz dB
DC Offset Baseband External Load
20
+40 60 5
mV k pF V dB degree
Output DC Voltage IQ Amplitude Balance IQ Phase Balance
VCC -1.3
VCC -1.6 +0.2 +2
VCC -1.9 +0.5 +5
7-40
Rev A4 010815
Preliminary
Parameter
GSM/DCS Mode
RF2689
Specification Min. Typ. Max. Unit Condition
Temp=25C, VCC =3V, ZLOAD =60k diff., LO=1080MHz@ -10dBm, ZSOURCE =500
IF Frequency 2nd IF Frequency LO Frequency LO Input Level LO Input Impedance Maximum Voltage Gain
-20 77
225 45 1080 -10 50 83
0
MHz MHz MHz dBm dB
Single-ended. VGC =0.5V to 2.4V Pin-to-Pin voltage gain. Note: 10dB additional voltage gain in input match 50 to 500.
Minimum Voltage Gain Gain Variation versus VCC and Temperature Gain Control Voltage Noise Figure Input IP3
-15 -3 0.3
-10 +2
-5 +3 2.4
dB dB V dB Defined with external 10k resistor in series with GC pin. Analog gain control. Maximum Gain. VGC =2.4V Minimum Gain VGC =0.3V Blockers at 800kHz and 1650kHz offset. Maximum Gain. VGC =2.4V Minimum Gain. VGC =0.3V Maximum Gain. Measured differentially. Out of band blocker causing 1dB of inband gain compression. Blocker at 800kHz offset. Maximum Gain. VGC =2.4V Minimum Gain. VGC =0.3V Single-ended Balance. An external resistor across the differential input is used to define the input impedance. Butterworth third order, FC 250k+10% 3dB rolloff from 50kHz offset Calibrated. FCLK =13MHz Uncalibrated. A measure of IQ gain match and IQ quadrature accuracy. Measured for baseband frequencies 100kHz to 2.5MHz. Resistive Load Impedance. Differentially across op pins. Capacitive Load Impedance. To ground. VGC =0.3V, PIN =-30dBm VGC =0.3V, PIN =-30dBm
6 80 -54 -5 1.5 -49 0 2.5
8 82
Inband Output 1dB Compression Compression
GSM IF Input Impedance
-65 -17 1200 2400
dBm dBm
Baseband 3dB Bandwidth
225 100
250
275 400 27
kHz kHz dB
Sideband Suppression
DC Offset Baseband External Load
20
+60 60 5
mV k pF V dB degree
Output DC Voltage IQ Amplitude Balance IQ Amplitude Balance
VCC -1.3
VCC -1.6 +0.2 +2
VCC -1.9 +0.5 +5
Rev A4 010815
7-41
QUADRATURE DEMODULATORS
dBm dBm VP-P
7
RF2689
Parameter
Auto Calibration
FCLK Input Frequency1 FCLK Signal Level FCLK Pin Input Impedance Calibration Time Current, Auto Cal. Current, Once Auto Cal Finished 13 0.4 20 200 1 1 2.7 3.0 <1 5 8 5 9 1.8 0 3.3 1.0 MHz VP-P k us mA uA V A mA mA mA mA V V Single-ended.
Preliminary
Specification Min. Typ. Max. Unit Condition
Disabled after calibration.
DC Specifications
Supply Voltage Current Consumption Power Down W-CDMA Standby W-CDMA GSM/DCS Standby GSM/DCS Logic Levels VEN High Voltage VEN Low Voltage
6 10 6 12 VCC 0.5
7
QUADRATURE DEMODULATORS
1Bondout
option available for 15.36MHz, 18MHz and 19MHz.
7-42
Rev A4 010815
Preliminary
Mode Control Logic
EN RX Chip Enable If EN =0 then the whole IC is powered down
RF2689
Mode Control Truth Table Mode
Power Down GSM/DCS RX Warm-Up GSM/DCS RX W-CDMA RX Warm-Up W-CDMA RX
EN RX
0 1 1 1 1
Mode B
X 0 1 0 1
Mode A
X 1 1 0 0
Auto Calibration Mode The filters are automatically tuned when the CALEN pin goes high. The filters are reset to a nominal value whenever the CALEN pin goes low. The auto calibration circuitry is independent of the "Mode A/B" and the EN RX control pins. The EN RX and CALEN pins can be connected together if desired. Truth Table
Mode Power Down GSM/DCS RX Warm-Up GSM/DCS RX W-CDMA RX Warm-Up W-CDMA RX W-CDMA GSM Input Amp Input Amp & 1st Mixer 0 0 0 0 0 0 1 1 0 0 Fixed Divider 0 1 (div 2) 1 (div 2) 1 (div 2) 1 (div 2) GSM Divider 0 0 (div 2) 1 (div 2) 0 0 Second Dividers 0 0 (div 12) 1 (div 12) 1 (div 4) 0 (div 4) VGA 0 0 1 0 1 Demod 0 0 1 0 1 Baseband & Filters 0 0 1 (250kHz) 0 1 (2.5MHz)
7
QUADRATURE DEMODULATORS
Rev A4 010815
7-43
RF2689
Pin 1 2 3 4 Function VGC1 GSM IN+ GSM INW-CDMA IN+ Description
Analog gain control. Valid control voltage ranges are form 0.5V to 2.5V. These voltages are valid with a 10k resistor in series with GC pin. GSM IF balanced input. Input internally DC-biased. Same as pin 2. W-CDMA IF balanced input. Input internally DC-biased.
Preliminary
Interface Schematic
BIAS
BIAS
1200
1200
W-CDMA IN+
W-CDMA IN-
5 6 7 8 9 10 11 12
7
QUADRATURE DEMODULATORS
W-CDMA INVCC MODE A LO MODE B EN RX Q OUTQ OUT+
Same as pin 4. Supply DCS/GSM/GSM RX/W-CDMA mode selection. LO input pin. Input internally DC-biased. Warm-up mode enable. The input LO buffers and divider chains are enabled. Chip enable. Complementary output to Q OUT+. Balanced baseband output.
See pin 4.
VCC
VCC
Q OUT+ 150 A Q OUT150 A
13 14
I OUTI OUT+
Complementary output to I OUT+. Balanced baseband output.
VCC VCC
I OUT+ 150 A I OUT150 A
15 16
CALEN FCLK
Calibration enable. FCLK clock reference for the automatic calibration circuitry.
20 k
17 18 19 20 Pkg Base
IFIF+ VREF2V VGC2 Die Flag
Complementary output to IF+. IF test point output. 2V voltage reference decouple. Gain control decouple. Ground.
7-44
Rev A4 010815
Preliminary
Application Notes
RF2689
Voltage Gain Measurement Set-up The evaluation board uses a unity voltage gain Op-Amp to simulate the 60k differential load impedance condition for the chip. The 50 output impedance of Op-Amp makes the use of a 50 spectrum analyzer power measurement possible. The power gain measured will be considered as RAW Gain. The input impedance of the chip is 500 differential by adding a parallel 680 resistor. The input transformer matches 50 to 500 and results in 10dB difference between voltage gain and power gain, hence, the voltage gain of the chip is RAW Gain minus 10dB. Because the input transformer loss is 0.8dB, it needs to be added to the gain. Since the Op-Amp has the unity voltage gain, the voltage at the evaluation board output is the same as the voltage at chip I or Q output. Therefore, the voltage gain of the chip with 60k load can be calculated by Gv=RAW Gain-10+0.8(dB) Input IP3 Measurement The input IP3 measurement is based on a two tone inter-modulation test condition from the 3GPP standard, which specifies two tones with offset frequencies at 10MHz and 20MHz. Due to the on-chip baseband filtering, the two tone output is attenuated and cannot be seen. Since the only parameter observable is the IM3 product, the input IP3 then is calculated by IIP3=Pin+0.5*(Pin+RAW Gain-IM3) Noise Figure Measurement The noise figure measurement is based on the noise figure definition NF=NO -NI -Gain, where NO is the output noise density, NI is the input noise density (-174dBm/Hz when no input signal is applied) and Gain is the RAW Gain. The output noise density NO is measured at 1MHz offset when no signal input is applied. The NF is calculated by NF=NO 174dBm/Hz-RAW Gain. Since the I and Q re-combination will provide 3dB extra for signal-to-noise ratio, the actual noise figure is should be reduced by 3dB. In addition, noise figure should be reduced by the input transformer loss of 0.8dB. Therefore, the NF is calculated by NF=NO +174-RAW Gain-3-0.8(dB) 1dB Gain Compression Point Voltage at Baseband Output The device has a relatively constant 1dB gain compression point versus VGC. Gain compression is tested with a CW signal with 60k load differential. How to Calculate the Power Gain of the Demodulator In the system analysis for cascaded gain, noise and IP, it is often required to calculate the power gain of the demodulator chip itself in matched load condition. Below is an example on how to determine this power gain value. For this example, the load impedance is 60k differential, the output AC impedance of the I or Q port is 500, the measured RAW Gain is 95dB. First, the power gain from the input of the chip to the input of Op-Amp needs to be calculated. Since the voltage at the 50 load and the voltage at Op-Amp input are the same, the difference of the power gain across the Op-Amp is the ratio of load impedances. Hence, the power gain to the Op-Amp input is 95dB-10log(60000/50)=95-30=65dB. Second, the power gain of the demodulator itself with matched load is calculated. The mismatch coefficient a is determined by the mismatch coefficient equation
7
QUADRATURE DEMODULATORS
4R S R L 4 500 60000 = 10 log ------------------------- = 10 log ------------------------------------- = - 15dB 2 2 ( RS + RL ) ( 500 + 60000 )
Rev A4 010815
7-45
RF2689
Preliminary
Since the power gain to the input of the Op-Amp GP'=GP, where GP is the power gain of demodulator for matched load. Therefore, the demodulator power gain is 65+15 = 80 dB. AC Coupling in Evaluation Board The output I and Q baseband signal is AC coupled for evaluation purposes only. The high-pass corner frequency is at 1/(2 RC)=1/(6.28*30k*100nF)=56Hz. I and Q Output DC Voltage and Its Offset Although the I and Q output is AC coupled on the evaluation board, in most applications, it would be DC coupled to the ADC input buffer. The DC voltage at the IC output is VCC -1.6V with a possible variation of 0.3V due to temperature and tolerance. The differential circuit asymmetry would cause common mode DC offset to the extent of 40mV. Baseband Filter Calibration Process The BB (baseband) filter calibration process is same for both WCDMA and GSM/DCS. After calibration is done, the WCDMA mode sets the circuitry to have a 3dB bandwidth of 2.5MHz, the GSM/DCS mode (if the chip has GSM/DCS mode) sets the circuitry to have a 3dB bandwidth of 250kHz. The BB filter in the I and Q path needs to be calculated every time after power down. When the FCLK pin is connected to a signal generator with 0dBm output level at 13.0MHz, a logic high at CALEN pin for 200s will calibrate the filter to have 2.5MHz bandwidth with 10% accuracy when WCDMA mode is set, or to 250kHz bandwidth with 10% accuracy when GSM mode is set. The calibration is done when the chip is powered on only. Calibration is independent from all other conditions, e.g. the chip enable could be off. The calibration circuitry consumes 400A. When the calibration sequence is complete after 200s, the ICC drops to 0mA. The 3dB bandwidth is defined to be from the reference level at 1MHz for WCDMA and at 50kHz for GSM/DCS. The 3dB bandwidth is independent of VGC and VCC. The filter can also be calibrated with different clock frequencies from 10MHz to 30MHz to tune the bandwidth over -40% to +60% from its default 3dB bandwidth (2.5MHz for WCDMA and 250kHz for GSM). The 3dB bandwidth is linear with clock frequency.
7
QUADRATURE DEMODULATORS
7-46
Rev A4 010815
Preliminary
Pin Out
VREF2V VGC2 FCLK
RF2689
IF+
* VGC1 1 GSM IN+ 2 GSM IN- 3 W-CDMA IN+ 4 W-CDMA IN- 5 *
IF-
20
19
18
17
16
* 15 CALEN 14 I OUT+ 13 I OUT12 Q OUT+ 11 Q OUT-
6 VCC
7 MODE A
8 LO
9 MODE B
10 EN RX
* * Represents "GND".
7
QUADRATURE DEMODULATORS
Rev A4 010815
7-47
RF2689
Application Schematic
FCLK
Preliminary
C9 10 nF R1 10 k VGC * C1 6 pF L1 68 nH R6 680 1 2 3 4 L2 150 nH C6 1 nF R7 680 5 * 6 7 20 19
C8 10 nF
C11 10 pF
18
17
16
* 15 14 13 12 11 ENCAL I OUT P I OUT N Q OUT P Q OUT N
C5 GSM IN 1 nF C2 5.1 pF WCDMA IN
8
9
10
7
QUADRATURE DEMODULATORS
*
C10 10 nF
C20 1 nF
VCC MODEA LO IN MODEB ENRX
7-48
Rev A4 010815
Preliminary
Evaluation Board Schematic
(Download Bill of Materials from www.rfmd.com.)
JP3 +5V -5V + C21 1 uF(16V) + 1 2 3 C22 1 uF(16V) CON3 C11 10 pF C8 1 nF R1 10 k VGC * J1 GSM 50 strip C1 6 pF C3* DNI L1 68 nH C5 100 pF R6 680 1 2 3 4 C2 5.1 pF 50 strip C4* DNI JP1 8 7 6 5 4 3 2 1 HDR 8 VGC VCC + C7 1 uF R11 1M R10 1M R9 1M R8 1M Note: Parts with * following reference designator should not be populated on evaluation board. C10 ENRX 10 nF VCC ENCAL MODEB MODEA C20 100 pF C23* DNI MODEA MODEB ENRX TP7 Q OUT N L2 150 nH C6 100 pF R7 680 5 * 6 7 8 9 10 20 19 18 17 16 * 15 14 13 12 11 * TP6 Q OUT P R13* DNI C18 100 nF C19 100 nF R4 10 k R5 10 k R12* DNI TP5 I OUT N C12 100 nF C13 100 nF R2 10 k R3 10 k R14 20 k 3+ 2 7 8 5 C9 100 pF TP4 I OUT P TP1 VREF2V TP2 IFP TP3 IFN Drawing 2689400 Rev -
RF2689
J3 FCLK
ENCAL
+5V C14 100 nF
U2 6 R18 51 C15 100 nF 50 strip J5 IOUT -5V
4
CLC426 R15 20 k +5V C16 100 nF R16 20 k U3 7 3+ 8 6 2 4 5
J2 WCDMA
50 strip R19 51 C17 100 nF
J6 QOUT -5V
CLC426 R17 20 k
7
QUADRATURE DEMODULATORS
J4 LO IN
50 strip C24* DNI
Rev A4 010815
7-49
RF2689
Evaluation Board Layout 3.098" x 3.000"
Board Thickness 0.152", FR-4 Multi Layer
Preliminary
7
QUADRATURE DEMODULATORS
7-50
Rev A4 010815
Preliminary
RF2689
7
QUADRATURE DEMODULATORS
Rev A4 010815
7-51
RF2689
Preliminary
7
QUADRATURE DEMODULATORS
7-52
Rev A4 010815
Preliminary
BaseBand Filter Measurement (Caliberated)
IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V)
8.0 6.0 4.0 2.0 Pout [dBm] @ 2.4 Vgc 9.00 8.00 7.00 6.00
RF2689
Base Band Filter Respose (Caliberated)
(VCC=3.0V, VGC=2.4V, IF=225.05MHz, LO=1080MHz @ -10dBm)
Pout [dBm]
Amplitude (dBm)
0.0 -2.0 -4.0 -6.0 -8.0 -10.0 -12.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
Amplitude (dBm)
5.00 4.00 3.00 2.00 1.00 0.00 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0
Frequency (MHz) IGC versus VGC
15.0
Frequency (kHz)
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, Temp. +25oC)
Igc [uA]
20.0
IGC versus VGC (VCC=3.0V, IF=225MHz, LO=1080MHz @ -10dBm)
Igc [uA]
7
QUADRATURE DEMODULATORS
10.0
15.0
5.0
10.0
0.0
5.0
IGC (uA)
IGC (uA)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-5.0
0.0
-10.0
-5.0
-15.0
-10.0
-20.0
-15.0
-25.0
-20.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
Voltage Gain versus POUT (1dB Compression)
IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V)
82.0 81.0 80.0 79.0 Voltage Gain [dB] 82.0 84.0
Voltage Gain versus Power Out (GSM-1dB Compression)
(IF=225MHz, LO=1080MHz, VCC=3.0V, VGC=2.4V)
Voltage Gain [dB]
Voltage Gain (dB)
77.0 76.0 75.0 74.0 73.0
Voltage Gain (dB)
700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
78.0
80.0
78.0
76.0
74.0 72.0 71.0 600 72.0 800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0 1600.0
POUT (mV-peak)
POUT (mV-peak)
Rev A4 010815
7-53
RF2689
Voltage Gain versus VGC (W-CDMA, Temp +25oC, -40oC, +85 C)
90.0 80.0 70.0
o
Preliminary
Voltage Gain versus VGC (GSM, Temp. +25 C, -40 C, +85 C)
100.0
o o o
(IF=225.05MHz, LO=1080MHz @ -10dBm, VCC=2.7V, VGC=2.4V to 0.3V)
Gain @2.7V,Temp.+25C
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=2.7V, VGC=2.4V to 0.3V)
Gain @2.7V,Temp.+25C Gain @2.7V,Temp.- 40C Gain @2.7V,Temp.+85C
80.0
Gain @2.7V,Temp.- 40C Gain @2.7V,Temp.+85C
60.0
Voltage Gain (dB)
60.0 50.0 40.0 30.0 20.0
Voltage Gain (dB)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
40.0
20.0
0.0
-20.0
10.0 0.0
-40.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
Voltage Gain versus VGC (W-CDMA, Temp. +25 C, -40 C, +85 C)
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V to 0.3V)
o o o
VGC (V)
Voltage Gian versus VGC (GSM, Temp=+25oC, 100.0
7
QUADRATURE DEMODULATORS
40oC,+85oC) (IF=225MHz, LO=1080MHz, VCC=3.0V, VGC=2.4V to 0.3V)
Gain @3.0V,Temp.+25C Gain @3.0V,Temp.- 40C Gain @3.0V,Temp.+85C
90.0 80.0 70.0 Gain @3.0V,Temp +25C Gain @3.0V,Temp.- 40C Gain @3.0V,Temp.+85C 60.0 80.0
Voltage Gain (dB)
60.0 50.0 40.0 30.0 20.0
Voltage Gain (dB)
40.0
20.0
0.0
-20.0 10.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 -40.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
90.0 80.0 70.0
Voltage Gain versus VGC (W-CDMA) (IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.3V, VGC=2.4V to 0.3V, Temp=-25oC, -40oC, +85oC)
Gain @3.3V,Temp.25C Gain @3.3V,Temp.- 40C Gain @3.3V,Temp.+85C
Voltage Gain versus VGC (GSM, Temp. +25 C, -40 C, +85 C)
(IF=225.05MHz, LO=1080MHz @ -10dBm, VCC=3.3V, VGC=2.4V to 0.3V)
100.0 Gain @3.3V,Temp.+25C 80.0 Gain @3.3V,Temp - 40C Gain @3.3V,Temp.+85C 60.0
o
o
o
Voltage Gain (dB)
Voltage Gain (dB)
60.0 50.0 40.0 30.0 20.0
40.0
20.0
0.0
-20.0 10.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 -40.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
7-54
Rev A4 010815
Preliminary
Voltage Gain versus VGC (W-CDMA, Temp. -40oC)
IF Freq. 190MHz, LO Freq. 1520MHz @ -10 dBm, VCC=3.3V, 3.0V, 2.7V,
90.0 80.0 70.0 60.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 -20.0
RF2689
Voltage Gain versus VGC (GSM, Temp. -40oC)
(IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
100.0 Gain @3.3V,Temp - 40C 80.0 Gain @3.0V,Temp.- 40C Gain @2.7V,Temp.- 40C
VGC=2.4V to 0.3V)
Gain @3.3V,Temp.- 40C Gain @3.0V,Temp.- 40C Gain @2.7V,Temp.- 40C
Voltage Gain (dB)
Voltage Gain (dB)
40.0
20.0
0.0
-40.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
Voltage Gain versus VGC (W-CDMA, Temp. 25oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
Voltage Gain versus VGC (GSM, Temp. +25oC)
IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
100.0 Gain @3.3V,Temp.+25C Gain @3.0V,Temp.+25C Gain @2.7V,Temp.+25C
90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 -20.0 60.0 Gain @3.3V,Temp.25C Gain @3.0V,Temp.25C Gain @2.7V,Temp.25C
7
QUADRATURE DEMODULATORS
1.4 1.6 1.8 2.0 2.2 2.4 1.4 1.6 1.8 2 2.2 2.4
80.0
Voltage Gain (dB)
Voltage Gain (dB)
40.0
20.0
0.0
-40.0 0.2 0.4 0.6 0.8 1.0 1.2
VGC (V)
VGC (V)
Voltage Gain versus VGC (W-CDMA, Temp. +85oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V,
90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 0.0 10.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 -20.0 0.2
Voltage Gain versus VGC (GSM, Temp. +85oC)
(IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.3V, 3.0V,
100.0
VGC=2.4V to 0.3V)
Gain @3.3V,Temp.+85C Gain @3.0V,Temp.+85C Gain @2.7V,Temp.+85C
2.7V, VGC=2.4V to 0.3V)
Gain @3.3V,Temp.+85C Gain @3.0V,Temp.+85C Gain @2.7V,Temp.+85C
80.0
Voltage Gain (dB)
Voltage Gain (dB)
60.0
40.0
20.0
0.4
0.6
0.8
1
1.2
VGC (V)
VGC (V)
Rev A4 010815
7-55
RF2689
IIP3 versus VGC (W-CDMA, Temp. +25oC, -40oC, +85oC)
10.0
Preliminary
IIP3 versus VGC (GSM, Temp. +25oC, -40oC, +85oC)
(IF Freq. 225.80MHz/226.650MHz, LO=1080MHz @ -10dBm, VCC=2.7V,
0.0
(IF=190MHz, LO=1520MHz @ -20dBm, VCC=2.7V, VGC=2.4V to 0.3V)
IIP3 @2.7V,Temp.+25C IIP3 @2.7V,Temp.- 40C IIP3 @2.7V,Temp. +85C
VGC=2.4V to 0.3V)
IIP3 @2.7V,Temp. +25C IIP3 @2.7V,Temp. - 40C
0.0
-10.0
IIP3 @2.7V,Temp. +85C
-10.0 -20.0
IIP3 (dBm)
-20.0
IIP3 (dBm)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-30.0
-30.0
-40.0 -40.0 -50.0
-50.0
-60.0
-60.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
IIP3 versus VGC (W-CDMA, Temp. +25oC, -40oC, +85oC)
IIP3 versus VGC (GSM, Temp. +25oC, -40oC, +85oC)
0.0
7
QUADRATURE DEMODULATORS
10.0
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V to 0.3V)
IIP3 @3.0V,Temp.+25C
(IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.0V, VGC=2.4V to 0.3V)
IIP3 @3.0V,Temp.+25C IIP3 @3.0V,Temp.- 40C IIP3 @3.0V,Temp.+85C
0.0
IIP3 @3.0V,Temp.- 40C IIP3 @3.0V,Temp.+85C
-10.0
-10.0
-20.0
IIP3 (dBm)
-20.0
IIP3 (dBm)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-30.0
-30.0
-40.0 -40.0 -50.0
-50.0
-60.0
-60.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
IIP3 versus VGC (W-CDMA, Temp. +25oC, -40oC, +85oC)
10.0
IIP3 vs VGC (GSM, Temp=+25oC, -40oC, +85oC)
IF=225.80/226.650MHz, LO=1080MHz @ -10dBm, VCC=3.3V, VGC=2.4V to 0.3V)
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.3V, VGC=2.4V to 0.3V)
IIP3 @3.3V,Temp.25C IIP3 @3.3V,Temp.- 40C IIP3 @3.3V,Temp. +85C
0.0 IIP3 @3.3V,Temp. +25C IIP3 @3.3V,Temp. - 40C -10.0 IIP3 @3.3V,Temp. +85C
0.0
-10.0 -20.0
IIP3 (dBm)
-20.0
IIP3 (dBm)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-30.0
-30.0
-40.0 -40.0 -50.0
-50.0
-60.0
-60.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
7-56
Rev A4 010815
Preliminary
IIP3 versus VGC (W-CDMA, Temp. -40oC) (IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
0.0 IIP3 @3.3V,Temp.- 40C IIP3 @3.0V,Temp.- 40C IIP3 @2.7V,Temp.- 40C -10.0 -20.0 -10.0
RF2689
IIP3 versus VGC (GSM, Temp -40oC)
(IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
0.0 IIP3 @3.3V,Temp. - 40C IIP3 @3.0V,Temp.- 40C IIP3 @2.7V,Temp. - 40C
IIPE (dBm)
-20.0
IIP3 (dBm)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-30.0
-30.0 -40.0
-40.0
-50.0
-50.0
-60.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
IIPE versus VGC (W-CDMA, Temp. 25oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V,
0.0 -5.0 -10.0 -15.0
IIP3 versus VGC (GSM,Temp. +25oC)
(IF=225MHz, LO=1080MHz @ -10dBm, Vcc=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
0.0
VGC=2.4V to 0.3V)
IIP3 @3.3V,Temp.25C IIP3 @3.0V,Temp.25C IIP3 @2.7V,Temp.25C
7
IIP3 @3.3V,Temp. +25C IIP3 @3.0V,Temp.+25C IIP3 @2.7V,Temp. +25C
-5.0 -10.0 -15.0
IIP3 (dBm)
-25.0 -30.0 -35.0 -40.0 -45.0 -50.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
IIP3 (dBm)
-20.0
-20.0 -25.0 -30.0 -35.0 -40.0 -45.0 -50.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
IIP3 versus VGC (W-CDMA, Temp. +85oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V,
5.0 0.0 -5.0 -10.0 -15.0
IIP3 versus VGC (GSM, Temp. +85oC)
0.0
VGC=2.4V to 0.3V)
IIP3 @3.3V,Temp. +85C IIP3 @3.0V,Temp.+85C IIP3 @2.7V,Temp. +85C
(IF=225MHz, LO=1080MHz @ -10dBm, Vcc=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
IIP3 @3.3V,Temp. +85C IIP3 @3.0V,Temp.+85C IIP3 @2.7V,Temp. +85C
-5.0 -10.0 -15.0
IIP3 (dBm)
-20.0 -25.0 -30.0 -35.0 -40.0 -45.0 -50.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
IIP3 (dBm)
-20.0 -25.0 -30.0 -35.0 -40.0 -45.0 -50.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
Rev A4 010815
7-57
QUADRATURE DEMODULATORS
RF2689
NF versus VGC (W-CDMA)
60.0
Preliminary
NF versus VGC (GSM)
(IF=225.05MHz, LO=1080MHz @ -10dBm, VCC=3.0V, VGC=2.4V to 0.3V)
90.0 80.0 N.F[dB] N.F[dB]
if=191MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V to 0.3V)
50.0
70.0 60.0
40.0
NF (dB)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
NF (dB)
50.0 40.0 30.0 20.0
30.0
20.0
10.0 10.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
VGC (V)
VGC (V)
7
QUADRATURE DEMODULATORS
7-58
Rev A4 010815


▲Up To Search▲   

 
Price & Availability of RF2689

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X